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M I X T U R E  P R O D U C E D  BY C O N T I N U O U S  C A S T I N G  

A. V. Kuznetsov UDC 536.242 

This is a study of the trends in macroliquation of  an impurity in continuous casting of  a thin strip produced 

of  a binary mixture. Special attention is paid to analysis of  the effect of forced convection, interdendrite 

filtration, diffusion, and the rate of  drawing on redistribution of  the impurity. 

Different aspects of heat transfer and flow of liquid metal that arise in continuous casting of thin strips 

have been studied rather recently in [1-3 ]. The main goal of the present study is analysis of macroliquation in 

continuous casting of thin-strip products of a binary alloy. To achieve this goal, we suggest a mathematical model 

that describes the combined processes of heat transfer, flow of the melt, and impurity transfer that determine the 
process being studied. A numerical solution of equations that constitute the obtained mathematical model is 

presented. 

In the last decade, much of the altention of researchers in heat and mass transfer has been devoted to the 

development of complicated mathematical models that are able to describe adequately and to predict the complicated 

thermophysical processes that take place in solidification of binary and multicomponent alloys. Derivation of a 

system of differential equations for a two-phase region which is based on the approach of the theory of mixtures 

was presented initially in [4, 5 ]. Recently, that model has been extended to microlevel processes and presented in 

]6, 7 ]. The derivation of a similar system of differential equations based on the averaging method is described in 

[8-10]. An excellent review of various models with a description of each of them is given in [11 ]. A new model of 

the two-phase region that includes the presence of solid, liquid, and gaseous phases is suggested in [ 12 ]. Since the 
time of publication of these works, processes that occur in solidification of binary alloys have been actively simulated 

with supercomputers. Results of such numerical simulation and characteristic features of the numerical procedures 

used are presented in [13-26 ]. 

Unlike the previous studies, the process considered in the present article is characterized by strong forced 

convection of liquid metal that is brought about by changes in the height of the free surface. We proceed from the 

system of differential equations that was obtained with the averaging method and described in [8, 9, 15 ]. That 

system of differential equations is modified to include specificity of the casting process studied. It is necessary to 

modify the system of differential equations because the models mentioned above are poorly suited for simulation 

of solidification with strong forced convection. In [13-26], the case of rather weak natural convection is mainly 

considered. 

Mathematical Model. The scheme of the process considered in the present article is shown in Fig. 1. A 

liquid melt flow is supplied to a casting table subjecled to high-intensity cooling. The metal flow over the table is 

described as the flow of a solidifying liquid which has a free surface. At the end of the casting table the solidified 

strip is drawn at a constant rate U. Special procedures are used to eliminate almost completely friction between the 

solidified crust in the bottom of the layer and the casting table. 

It is assumed that the melted material gets to the casting table at a temperature slightly exceeding the 

initial solidification temperature and that the distribution of the velocity of the liquid metal entering the casting 

table is parabolic and corresponds to the steady-state flow. In writing the conservation equations, it is assumed 

that the present process is described with sufficient accuracy by a two-dimensional and steady-slate model and 
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Fig. I. Scheme of the process. 
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that the thin- layer  approximation is applicable here. The latter fact allows us to make the differential equations 

that describe the present  problem parabolic. It is assumed that liquid and solid phases are isotropic, thermophysical  

properties of the phases are constant,  and deformation and relative motion in the solid phase and formation of gas 

porosity in the two-phase region can be neglected. Nevertheless, thermophysical  properties of the solid and liquid 

phases can be different.  

As regards the diffusion mechanism of impurity transfer,  it is assumed that diffusion of the impuri ty in 

the solid phase can be neglected on the macrolevel. Nevertheless, on the microlevel (inside the control volume on 

which averaging is performed),  it is assumed that the impurity distribution is equilibrium in the solid phase. This 

assumption is extremely popular in modeling of macroliquation in binary alloys and is used in almost all the 

publications mentioned above. To a great extent,  this can be explained by the substantial simplification introduced 

to the mathematical model by this assumption. Indeed,  without this assumption, it would be necessary to take into 

considerat ion the "his tory" of the impurity distribution on the microlevel, which would result  in an integro- 

differential system of equations. 

In modeling of the free surface, it is assumed that the radiative and convective heat t ransfer  from the free 

surface is negligible and surface tension can be neglected on the free surface. 

With the aforesaid assumptions, the system of differential equations suggested in [8, 9, 15] becomes 

parabolic and is written in the following dimensionless form. 

The momentum equation 

e - - +  ~ 0 u - I - ~  = - e  + - -  - 2  e + - - I K I  K (1) 
0X [ OX 0X cSZRe Oy ReDa Da 1/2 " 

In view of the assumption of a small thickness of the layer,  for the considered melt flow with a free surface 

it is assumed that in the layer  the pressure distribution obeys the hydrostat ic  law, which can be writ ten in 

dimensionless form as 

= - -  [W ~ )  - y]  (2) 
Fr 2 

In the two-phase region, the Darcy number  is a function of the volume fraction of the liquid phase and is 

defined by the relation [13, 15] 

d 2 3 
Da - - -  ~ (3) 

180L 2 (1 - e) 2" 

The  coefficient F, which includes inertia forces, can be calculated, following [27 ]: 

F = 0.13e - 3 / 2 .  (4) 

The continuity equation 

(1 - P s )  0_re + 0 F +  0~ 0 .  (5) 
02 02 0y 
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The energy equation 

- 0 0  1 O ( 0_~) 1 0 e  (pc)* 0__00 + 5 oO + v 62 k* 
OE O.~ O-~ Re Pr O~ Ste O-A 

For numerical realization, the last term on the right-hand side of Eq. (6) is written in the form 

(6) 

[ ] 1 Oe = l Oe O0 + O~ a(p*O) = 
Ste O~ Ste O0 O-~ O ( p* O ) OE 

I /0o 0o /] _ 1 y p o--O-° + , - ~ + 5 . ( 7 )  

Ste (I - p2x) (O - O~ (I - ps K) (O Op) OE 

The impurity conservation equation. Its form which is ordinarily used in calculations of solidification of 
binary alloys includes both the average impurity concentration and the impurity concentration in the liquid phase 

[15]. For the case of strong forced convection considered in the present work, it is found that this form of the 

equation leads to numerical instability. Therefore, following [9 ], we use the form of this equation that includes 

only the impurity concentration in the liquid phase: 

0(I) L O(I) L 0(I) L 1 O [ L[ e 0~L" ][ .Oe 
+ U + ~ - -  --  . . . . .  (I) L (1 - ~c)Ps - -  (8) 

[ e + r . P s ( 1 - e ) ]  OE OE 0~ 6-20~ e R e P r  0~J  OE 

After determination of ~L per unit volume of the alloy in the two-phase region, we find 

p*Ct) = p ;  (1 --  e)  K(I~ L + e(I)L , (9) 

and the average mass concentration of the impurity in the two-phase region is equal to 

= P*O (10) 
p~  (I - ~) + 

In the present article, a linear approximation of the liquidus and solidus lines is used in the equilibrium 

diagram that relates the temperature and concentration of the impurity: 

(D L = ( O - O p ) / y ,  0 < e <  1; (11) 

(I)s = /¢~)L '  0 < e < 1 . (12) 

It follows from Eqs. (9), (11), and (12) that at a certain point of the two-phase region the volume fraction 
of the liquid phase is defined by the relation 

*(I)  * p - p ~ K ( o -  Op)/~ (13) 
~ ( o ,  o )  --- 

(l - p ~ )  (o - op)/~, 

Equation (13) is only valid within the two-phase region, i.e., when the following inequalities are satisfied: 

O < Op, (14a) 

psK ( O  --  O p ) / y  ~ p*(D _< ( O  - O p ) / ~ ' .  (14b) 
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If al least one of the inequalities (14a) or (14b) is violated, the volume fraction of the liquid phase is def ined 

by the following relations: 

e =  1 at 0 > ®p,  (15a) 

e =  1 at O <  Op and p * ~ >  ( O - O p ) / 7 ,  (15b) 

c = 0  at O <  Op and p * ~ < p s  x (O-Op) l~ , .  (15c) 

Boundary  Conditions. For modeling of the continuous casting (Fig. 1), the following boundary  conditions 

are used: 

at the boundary  ~ = 0: 

-- Uin , v = via , O = din , (I~ L = tl~in ; (16) 

at the boundary  y--  0: 

~ = 0 ,  v = 0 ,  k. o o _  qhoo ," (17) 

(Tin - Tc) kL 

on the free surface 7 = v/: 

OU 0 O0 Oqb L da] / 
- - =  , - 0 ,  - 0 ,  - - ~ + V O = ~ .  (18) 
o7 o7 o7 a~ 

For numerical realization, the last of boundary conditions (18) is replaced by the equivalent condition of 

the mass-flow-rate conservation in the cross section: 

"?{ " I " 

[e + (1 - e ) p  s] + ~  d y = p s .  (19) 
0 

Equation (19) is obtained by integration of continuity equation (5) between 0 and h with account of the 

latter equation at boundary conditions (18). When Eq. (19) was obtained,  it was assumed that on the free surface 

the entire alloy is in the liquid state. The case where on the free surface the alloy is in the two-phase state is 

discussed in what follows. 

Modification of the Model where the Two-Phase  Region Reaches the Free  Surface.  Impuri ty conservation 

equation (8) requires special consideration for the case where on the free surface the alloy is t ransformed into the 

two-phase state (the distance from the beginning of the casting table to the point at which this t ransformation 

occurs is designated by X*). First, Eq. (8) is rewritten in the form 

0 1 0 [ O®L] (20) 
0 [~p.q~ ] + [ ~ L 1  + l~'l~t.] -- 62 
Ox Ox Oy O~ Le Re Pr O~ J 

The physical meaning of Eq. (8) consists in the fact that the mass of the impurity per unit volume can be changed 

both by the relative motion of the liquid phase and by diffusion of the impurity in the liquid phase. 

We consider the impurity flow rate through the cross section of the strip. It is evident that the amount  of 

impurity that passes through the cross section of the strip in the direction of the x axis should be the same in any  

cross section. Integrating Eq. (20) from 0 to W and using Eq. (19) and boundary conditions (17) and (18), we 

arrive at the following relation: 
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a v~y) * (21) 
02 0 d~ 

In its physical meaning, the integral on the left-hand side of Eq. (21) determines the impuri ty mass flow rate 

through the cross section whose distance from the beginning of the casting table is de termined  by the coordinate 

2. This mass flow rate should be the same at any coordinate 2. This condition is evidently satisfied until e = 1 at 

= ~ (~ ) ,  since at e = 0, the r ight-hand side of Eq. (21) becomes zero. This condition is violated when e < l,  i.e., 

when on the free surface the alloy is transformed into the two-phase state. According to Eq. (9), at a specified 

tempera ture ,  the equil ibrium concentra t ion of the impuri ty  is h igher  in the liquid phase  than  the average 

concentration in the two-phase region. When on the free surface the alloy is t ransformed into the two-phase state, 

it follows from Eq. (21) that the amount of impurity that is transported to the free surface exceeds its amount  that 

should be on the free surface in accordance with the equilibrium relations. This result implies a conflict between 

the equilibrium relations and the conservation laws that appears when one tries to use Eq. (8) at ~ > X*. Therefore ,  

if ~ > X*, the mathematical model described by Eqs. (1), (5), (6), and (8) becomes incorrect,  and it is necessary 

to use an alternative mathematical model. 

At ~ > ~f* the liquid-phase flow relative to the solidified material is small and can be neglected. This  results 

in the following form of the momentum equation: 

= 0 .  (22) 

Thereby  we assume the absence of relative motion in the direction of the ~ axis. Therefore ,  motion that is caused 

by shrinkage of the alloy in the two-phase region is the only motion that takes place in a layer  of the material. 

Consequently,  the motion in the direction of the y axis (which has the negative velocity v--) is the only relative motion 

in the strip. Since it is assumed that both in the layer of the alloy and on the free surface, porosity is not formed, 

this motion of the layer  inevitably causes deformation of the solid phase in the two-phase region and induces motion 

of both solid and liquid phases. Now, in the averaging volume, these phases move as a unit. These  assumptions 

lead to the following form of the continuity,  energy, and impurity conservation equations: 

(1-p~)o-e+ [e+p~(l-E) 10~+~( l -POO~=0,  
O~ Oy a~ 

(23) 

02 0y 62Re Pr Oy Ste 02" 

In order  to obtain Eq. (24), we used an additional assumption that the velocity of vertical motion ~ varies slowly 

relative to the coordinate ~. 

For numerical realization, the last term in Eq. (24) should be replaced with account of Eq. (7). 

Finally, at ~ > ~(*, Eq. (8) is replaced by the following equation: 

0 [p*o ] + 2_ f~ p*¢I, 1 = o. (25) 
02 0y 

For Eqs. (23)-(25) the boundary conditions are as follows: 

at the boundary  y = 0 

= 0 ,  k* O ®  _ qhoo , (26) 

0~ (Tin -- Tc)  k L 

on the free surface ~ = W: 
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Fig. 2. Locations of free surface (1, 4), liquidus (2, 5), and solidus (3, 6) at 
rates of drawing of 0.1 m / s e c  (1-3) and 0.4 m / s e c  (4-6). 

O® 
- 0 ,  • = const (27) 

0y 

plus the integral  condition specified by (19). Equation (19) is used with account of the assumpt ion that  the 

horizontal  component  ~ of the velocity of relative motion becomes zero at E > X*. 

The  boundary  condit ion used for Eq. (25) is specified as the second one in (27) and needs  special 

discussion. Equation (25) is a t ransfer  equation and requires only one boundary  condition for its solution. Since 

the velocity of vertical motion ~ is negative at E > X*, it is necessary to indicate the boundary  condition on the free 

surface. Here ,  the impurity mass  per unit volume pC that  includes both liquid and  solid phases  increases  as 

solidification continues. This  increase is caused by volume shr inkage of the alloy in the two-phase  region and,  as 

a consequence, by increasing the average densi ty of the material  in the averaging volume. On the o ther  hand ,  the 

average  mass  fraction C of the impur i ty  remains  constant .  This can be a t t r ibuted to the assumpt ion  that  at  

> ~(*, a mixture  of liquid and solid phases moves as a unit in the averaging volume. Thus ,  at E > ~(* the boundary  

condition that is used for the impuri ty conservation equation has the physical  meaning  that  the impuri ty  fraction 

C (O in the dimensionless form) remains unchanged after  the alloy was t ransformed into the two-phase  state on 

the free surface. 

Analysis of  Numerical  Results. Practical calculations were carried out for the binary sys tem N H 4 C I - H 2 0 ,  

containing 0.1% of H20  (water is an impurity).  In the future,  it is planned to conduct an exper imenta l  s tudy on 

a model setup. Ammonium chloride was chosen as a binding material  because it has a low melting tempera ture ,  

which makes creation of the exper imental  setup easier. It should be noted that  since the growth of dendr i tes  that  

accompanies solidification of the system N H 4 C I - H 2 0  is similar to this growth that  accompanies solidification of 

metal  alloys, this sys tem was used repeatedly for simulation of solidification of metals [13, 15 ]. In calculations, 

the following thermophysical  propert ies of the material  and process pa ramete rs  were used: L = 2 m; h= = 0.0014 

m; Tin = 600 K; Tp = 632.42 K; Tc = 273.15 K; Cin = 0 .1%;  CE = 0 .803%;  DE = 1033 kg/m3;  Ps = 1078 kg/m3;  k L 

= 0.468 W / m - K ;  ks = 0.393 W / m . K ;  CL = 3249 J / ( k g . K ) ;  Cs = 1870 J / ( k g . K ) ;  Ah = 3.138.105 J /kg ;  q = 3.2-105 

W/m2;  VL = 1.206" 10 -6  m2/sec;  d = 1 • 10 -4  m; D E = 4 .8 .10 -9  m2/sec;  F = - 4 6 7  K; • = 0.3. The  calculations were 

carried out on a Silicon Graphics  XL E l 0  000 supercomputer  in a f inite-difference network with 5" 103 points in 

the ~ axis and 5- 103 points in the ~ axis. 

In Fig. 2, one can see positions of the free surface, liquidus, and solidus at various rates of drawing of the 

strip. It can be seen that at rates of drawing of up to 0.4 m/sec ,  the shape of the free surface is a lmost  horizontal.  

Since the densi ty of the heat flux that is t ransferred from the strip-casting table contact surface remains  constant ,  

an  increase in the rate of drawing leads to an increase in both the width of the two-phase region and its d imension 

in the direction of the x axis. The  curves in Fig. 2 were calculated with account of diffusion of the impuri ty  in the 

liquid phase. 

Figure 3 shows the distribution of the average concentrations of the impurity at the beginning of the casting 

table (at E = 0) and af ter  cessation of solidification (at E = 1) at different rates of drawing of the strip. These  

dis t r ibut ions were calculated with account of diffusion of the impurity in the liquid phase and neglecting it. 
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Fig. 3. Distributions of average impurity concentrations at the beginning of 

the casting table (1) and after completion of solidification at rates of drawing 

of 0.1 (2), 0.2 (3), 0.3 (4), and 0.4 m/sec (5), neglecting (a) and including 

(b) diffusion of impurity in the liquid phase. 

Comparison of Fig. 3a and b shows that the effect of diffusion is especially pronounced at the surface of the casting 

table. Here diffusion of the impurity in the liquid phase brings about a formation of the diffusion boundary layer 

that is characterized by a low content of the impurity. This formation can easily be explained in view of the fact 

that the lower boundary of the strip is simulated as a wall impermeable for the impurity. Heat is transferred 

simultaneously from this boundary, which results in a sharp gradient of the liquid fraction. Since in solidification 

the impurity is displaced from solidifying dendrites into the interdendrite liquid, the gradient of the volume fraction 

of the liquid phase leads to a sharp concentration gradient of the impurity in the liquid phase (as the distance to 

the lower boundary of the strip decreases, the smaller amount of the liquid phase remains and the higher amount 

of the impurity is displaced into the liquid phase). Thus, solidification of the alloy at the lower boundary of the 

strip is characterized by the following: as the distance to the casting table decreases, the impurity concentration in 

the liquid phase increases. This gives rise to high-intensity diffusion transfer of the impurity in the averaging volume 

(it includes both the liquid and the solid phase) at the lower boundary. 

On the contrary, the calculations that neglected diffusion transfer of the impurity (Fig. 3a) show that the 

impurity concentration increases at the surface of the casting table. This is caused by high-intensity transfer of the 

impurity to the surface of the casting table by the interdendrite liquid flow that compensates for solidification 

shrinkage of the material (the so-called inverse microliquation). 

Thus, in the real situation (Fig. 3b), at the surface of the casting table two competing processes have an 

important effect on the impurity redistribution, namely, diffusion of the impurity in the liquid phase, which 

decreases the amount of the impurity at the boundary, and an interdendrite liquid flow, which increases the 

impurity concentration at the boundary. It should be noted that the effect of diffusion is important only in the 

narrow boundary layer at the surface of the casting table, outside which it rapidly weakens. Therefore, interaction 

of these two factors results in a concentration profile that has a local maximum at the surface of the casting table. 

As the distance from the casting table increases, forced convection and interdendri te  filtration that 

compensates for shrinkage become controlling factors. The latter leads to downward transport of the impurity, but 

its effect is proportional to the solidification rate, i.e., it rapidly becomes weaker as the distance from the surface 

of the casting table increases. On the contrary, transfer of the impurity by forced convection caused by increasing 

the height of the free surface results in upward transport of the impurity. It should be noted that the convection 

rate increases as the distance to the free surface decreases. Therefore,  the local maximum of the impurity 

concentration that is located near the casting table (this maximum is generated by interdendrite filtration) is 

replaced by a local minimum that is caused by transfer of the impurity by forced convection from the lower part 

of the strip to its central part. Since the forced-convection intensity correlates with the rate of change in the height 

of the free surface, the depth of this minimum is maximal at U = 0.1 m (a substantial change in the height of the 

free surface) and minimal at U = 0.4 m/sec (the free surface is almost horizontal). Finally, the local maximum of 

the impurity concentration observed in the central part of the strip is caused by transport of the impurity by forced 

convection. 

260 



Conclusions. It has been found that although the effect of diffusion transfer of the impurity is maximal at 

the surface of the casting table, calculations that are performed with neglect of diffusion for the system NH4CI-H20 

give a qualitatively incorrect impurity distribution over the thickness of the strip. However, it should be noted that 

for binary metal alloys, the diffusion coefficient of the alloying component is ordinarily much lower than it is in 

the system NH4CI-H20; therefore, it can be expected that for metal alloys diffusion will result in a more local 

surface effect. Concentration profiles that were calculated with account of diffusion have a local maximum near the 

surface of the casting table. The local maximum is subsequently replaced by a local minimum and again by a local 

maximum in the center of the strip. This form of concentration distribution of the impurity can be explained by 

competing interactions of various mechanisms of impurity transfer, namely, diffusion transfer, impurity transfer 
by interdendrite filtration that compensates for solidification shrinkage, and transfer of the impurity by forced 

convection. 
The author is grateful to the A. Humboldt Foundation and the Technical University of Vienna for support 

of this study. 

N O T A T I O N  

c, specific heat, J / (kg.  K); CL, Cs, mass fractions of impurity in liquid and solid phases; C, average mass 

fraction of impurity in the two-phase region, pC/[ps(1 - e) + pLe ]; CE, mass fraction of impurity in the eutectic; 

d, average diameter of the base of primary branches of dendrites, m; DE, diffusion coefficient of impurity in 

interdendrite liquid, m2/sec; Da, Darcy number, K/L2; Fr, Froude number, U/x/-g-£; h, height of the free surface, 

m; h , ,  height of the free surface at the end of the casting table (after completion of solidification), m; k, thermal 

conductivity, W/(m.  K); k*, ratio of thermal conductivity, [ekE + (l -- e)ks ]/kL; K, permeability, m2; L, length of 

the casting table, m; Le, Lewis number, elL/DE; p, pressure, Pa; fi, dimensionless pressure, p/(pLU2); Pr, Prandtl 

number, VL/aL; q, density of the heat flux transferred from the surface of the casting table, W/m2; Re, Reynolds 

number, UL/VL; Ste, Stefan number, CL(Tin -- T c ) /Ah;  T, temperature, K; Tp, melting temperature of ammonium 

chloride, K; Tc, temperature of coolant, K; v, vertical velocity component, m/sec; ~, dimensionless vertical velocity 

component, v/(U6); u, horizontal component of relative velocity, m/sec; K, dimensionless horizontal component of 

relative velocity, u/U; U, rate of drawing of the strip, m/sec; U, dimensionless rate of drawing of the strip, 

U/-U = l; x, horizontal coordinate, m; Y, dimensionless horizontal coordinate, x/L; X*, distance from the 

beginning of the casting table, when the alloy of the free surface is transformed into a two-phase state, m; X'*, 

dimensionless distance from the beginning of the casting table, when alloy on the free surface is transformed into 

a two-phase state, X*/L; y, vertical coordinate, m; ~, dimensionless vertical coordinate, y/hoo; a, thermal 

diffusivity, k/(pc), m2/sec; ¢5, ratio of the thickness of the strip to the length of the casting table, ho~/L; Ah, specific 

heat of melting, J/kg; e, volume fraction of the liquid phase; ~L, dimensionless impurity concentration in the liquid 

phase, CL/CE; ~s, dimensionless impurity concentration in the solid phase, Cs/CE; q~, dimensionless average 

impurity concentration, C/CE; Y, dimensionless slope of the liquidus line, FCE/(Tin - Tc); F, slope of the liquidus 
line, K; to, coefficient of equilibrium impurity distribution between solid and liquid phases in the two-phase region, 

Cs/CL; kLL, dynamic viscosity of the liquid phase, kg/(m, see); rE, kinematic viscosity of the liquid phase, m2/sec; 

O, dimensionless temperature, (T - T c) /(Tin - Tc); t3, density, kg/m3; Ps, ratio of densities of solid and liquid 

phases ,  ps/PL; (pC)*, ratio of heal-accumulating capacities, [epLC L + (l  -- e)psC s ]/pLCL; pC, mass of impurity per 

unit volume in the two-phase region, ps(1 - eC s + pLeCL, kg/m3; (p*~), dimensionless mass of impurity per unit 

volume in the two-phase region, pC/pLCL; W, dimensionless thickness of the strip, h/hoo. Subscripts: in, refers to 

x = O; L, refers to liquid phase; p, pure ammonium chloride; s, solid phase. 
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